Quantum Chemical Investigation of Spectroscopic Properties of Iron Complexes as Models for Fe-N-C Fuel Cell Catalysts
For a climate-friendly automotive sector, fuel cell technology becomes increasingly important. A promising step towards accessibility and commercialization of this technology may be reached using Fe-N-C catalyst materials for the cathode reaction of the fuel cell. With their high activity, Fe-N-C catalysts can potentially substitute currently used, expensive platinum catalysts. Fe-N-C catalysts however lack stability and their active site composition is not sufficiently well understood for systematic improvements. This project combines spectroscopy and quantum chemical calculations in order to uncover the structure of the active site(s) in Fe-N-C catalysts and better understand their electronic structures.