National High Performance Computing

The NHR Alliance bundle the resources and competencies of university high-performance computing and make them available to scientists at German universities free of charge. The NHR Alliance does not limit itself to providing computing capacities, but also supports users in particular by providing advice and training in the use of high-performance computing in their fields of application. Within the national network, our services are broadly diversified in terms of subject matter and can be used on a supra-regional basis. 

Category:
Project Manager:
Dr. Ana-Catalina Plesa

Thermal Evolution and Dynamics of the Interior of Planets and Moons

Principal Investigators:
Dr. Ana-Catalina Plesa
HPC Platform used:
NHR@KIT: HoreKa

Over the past decades, large-scale computer simulations have grown to become one of the most powerful approaches to study the interior of Earth-like planets. Geodynamical models are used to investigate the evolution and distribution of the temperature inside the planet that ultimately affects its structure and the way the planet cools over time. Combined with data obtained from planetary missions and laboratory experiments, these models help us to improve our understanding of the history and current state of planets in our Solar System and beyond. These models can teach us about the formation and evolution of planetary environments

Project Manager:
Prof. Uwe Naumann

CFD Simulations Ecurie Aix

Principal Investigators:
Prof. Uwe Naumann
Affiliation:
RWTH Aachen University
HPC Platform used:
NHR4CES@RWTH: CLAIX

Every year we, as the Formula Student Team of RWTH Aachen University, develop a completely new electric race car and revise a previous car to be able to drive autonomously. For our Aerodynamics team, the electric vehicle is the main focus. We try to find the best geometries for our car within the regulatory constraints and while keeping performance compromises with other design areas in mind.

Project Manager:
Marius Trollmann

Resolving the Structure of mRNA-Vaccine Lipid Nanoparticles

Principal Investigators:
Prof. Dr. Rainer Böckmann
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
HPC Platform used:
NHR@FAU: Alex GPU cluster

Lipid nanoparticles (LNPs) are very successfully employed as novel transport vehicles for mRNA vaccines. A major gap in our understanding and thus obstacle for future developments of nanoparticle-mRNA drugs, however, is the lack of a molecular picture and molecular insight into LNPs. In this project we aim to provide unique insight at the atomistic scale into the structure and mechanisms of these carriers.

Project Manager:
Driss Kaddar

Direct numerical simulation of Flame-Wall-Interactions of DME flames

Principal Investigators:
Prof. Dr.-Ing. Christian Hasse
Affiliation:
Technische Universität Darmstadt
HPC Platform used:
NHR4CES@TUDa: Lichtenberg Cluster Darmstadt

The energy transition is a global challenge with major economic and social impact. Future combustion devices will have to adapt to enable low-carbon or carbon-free sustainable power generation. The design of high efficiency devices and the use of alternative fuels is heavily supported by computational fluid dynamics simulation. However, detailed simulations of complete combustion systems are still computationally unfeasible to this day. This illustrates the need for accurate but less computationally demanding models. In this project, a direct numerical simulation (DNS) of turbulent flame wall interaction was conducted to provide further physical insight to near wall combustion processes and to contribute to the development of novel